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Fermat’s Last Theorem   

For positive integers a, b, and c, a
n 
+ b

n
 = c

n
 is valid only for positive integer values of n less than or equal to 2. 

 

The Pythagorean Theorem   

For positive integers a, b, and c, a
2 
+ b

2
 = c

2
. 

 

Divisibility 

We say p divides q if there exists a number k1 for which q =pk. 

 

I. Introduction 
 Ever since Pierre De Fermat (1601- 1665) wrote he had a “truly marvelous proof” of what is known as his 

“last” or “great” theorem
1
, mathematicians have been searching for a simple proof.             

 

We contribute a precise proof of Fermat’s Last Theorem in two parts.  The first part shows:  

 

a
2n+1

 + b
2n+1   

= (a+b)c  and  b
2n 

  a
2n  

= (a+b)c                 

 

The second part of the proof shows that, for n 1:  

 

a
2n1

 + b
2n1   

 c
2n1 

  and   a
2n

 + b
2n   
 c

2n 
   

 

 

II. The Notion Of Divisibility 
We begin with the difference of squares.  By the Pythagorean Theorem:   

 

a
2 
+ c

2
 =b

2
    c

2
 = b

2
  a

2   
=(b+a)(b a)   

 

It is clear ab.  We derive a key principle by observing then there exists a positive integer k1 for which b =a+k.  

Subsequently, k = ba, which allows us to write:      

 

b
2
  a

2  
=(a+b)k

   
                                                                                                                                           

                                                                                                                           

Without going into great detail, b
2n

  a
2n 

 =(a+b)c whenever n = 2
m
.  Example:

    
                                                                                                                                          

 

b
8
  a

8  
=(b

4
 +a

4
) (b

4
  a

4 
)  =(b

4
 +a

4
)(b

2
 +a

2
) (b

2
  a

2
) 

 

The important thing is b
6
  a

6  
=(b

3
 +a

3
) (b

3
  a

3 
) should not be divisible by a+b since it does not reduce to the 

difference of squares.  To our surprise, we find b
3 
+ a

3
 = (a+b)c!   

 

With further exploration comes the notion that divisibility is interdependent.  Observe that: 

 

b
2n

  a
2n

  =(a+b) [a
2n1

  +  b(b
2n1 

+ a
2n1

)(a+b)
1 

]                                                                                                            

        

a
2n+1

 +b
2n+1

  = (a+b) [a
2n

  +  b(b
2n 

  a
2n

)(a+b)
1 

]                                                                                                             
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In each case, the factor (a+b)
1

 signals dependency.  As a simple model:  

 

3
4
  2

4
  = 5(13) =5[8+3(7) ]  =5[ 8+3(35) 5

1
]    3

4
  2

4
  = (2+3) [2

3
  +  3(3

3 
+ 2

3
)(2+3)

1 
]                   

              

Armed with b= a+k and interdependence, we address our first goal.      

  

III. Proof Of Divisibility 
Proposition 1:  a

2n1
 + b

2n1   
= (a+b)c   

 

Proof by induction:  Let a, b, c, c, and k be positive integers.  WLOG let a b.  Let S denote the solution set. 

 

P(1) is trivially true.   

 

For n=2:  a
2n1 

+b
2n1  

 = a
3 
+b

3 
.  Observe that: 

 

a
3 
+b

3 
=  aa

2 
+bb

2 
+  (ba

2
  ba

2 
) 

 

 =  aa
2
 + ba

2  
+ bb

2 
  ba

2
 
 
  

 

=   
 
(a+b)

 
a

2 
+ b(b

2 
  a

2
)  

 
  

 

=   (a+b)[
 
a

2
+ b(b

 
  a)]  = ( a+b)c 

 
  

          

Assume P(n) is true.  This is to say a
2n1 

+b
2n1  

= (a+b)c is true.  Then:      

 

a(a
2n1 

+b
2n1 

) +kb
2n1 

 = a(a+b)c +kb
2n1 

            

         

a
2n 

+ (a
 
+k)b

2n1 
           = a(a+b)c +kb

2n1 
             

 

a
2n  

+b
2n                                     

= a(a+b)c +kb
2n1                  

 
 
     

 
            

          
 
                                                                                                               

a(a
2n 

+b
2n

)  +kb
2n

 
            

 = a
2
(a+b)c + akb

2n1 
 +kb

2n
 
 
           

 

a
2n+1 

+ b
2n+1

                 
 
 = a

2
(a+b)c + akb

2n1 
 +bkb

2n1
 
  

 

                                                          
= a

2
(a+b)c + (a+b)kb

2n1
 
 
 =(a+b)(a

2
c + kb

2n1
)  

                                                                                                                          

a
2n+1 

+ b
2n+1

                      = (a+b)c   

 

a
2n1 

+b
2n1 

= (a+b)c implies a
2(n+1)1 

+b
2(n+1)1  

=  a
2n+1 

+b
2n+1 

= (a+b)c.   

 

This shows nS  n+1S.   Therefore, 1S and nS  n+1 S implies the solution set S is equivalent to the 

set of positive integers.  In other words:  

             
 
     

n  Z
+
,  a

2n1 
+b

2n1  
= (a+b)c  

 

Proposition 2:  b
2n

  a
2n   

= (a+b)c   

      

The proof of b
2n

 a
2n

  = (a+b)c is made by replacing  a
2n1 

+b
2n1 

with b
2n

 a
2n

:  Observe that:          

  

a(b
2n 
a

2n 
) +kb

2n 
 = 

 
 b

2n+1  
a

2n+1  
   a(b

2n+1  
a

2n+1  
) +kb

2n 
 = 

 
 b

2(n+1)  
a

2(n+1)  
       

 

The right–hand side of the argument in Proposition 1is unchanged. 

 

 

 



Divisibility and Fermat’s Last Theorem 

www.ijesi.org                                                                50 | Page 

IV. A Simple Proof of Fermat’s Last Theorem 

The odd power case:  We claim that a
2n+1

  +b
2n+1 

 c
2n+1

. 

 

Proof: Let a, b, c, d and k be positive integers.   BWOC, assume a
2n+1

  +b
2n+1 

= c
2n+1

.                                                                                                                                            

 

By Proposition 1, a
2n+1

  +b
2n+1 

= (a+b)d .  Then c
2n+1

  = (a+b)d, which implies:  

 

c  = (a+b)d( c
2n

 )
1

                                                                                                                                             (1) 
 

Since c is a positive integer, c
2n 

divides (a+b)d evenly.  Clearly, c
2n   

does not divide (a+b), thus: 

 

d = c
2n

 k 

 

This means (a+b)d ( c
2n

 )
1 

 = (a+b)k.  By substitution in figure (1): 

 

c  = (a+b)k    c
2n+1

  =(ak+bk) 
2n+1

    

 

For the least case k=1, the expansion of the binomial power yields: 

 

(a+b)
2n+1

  = a
2n+1

 +q2ba
2n

  +q3b
2
a

2n1
  … +q2nab

2n
  +b

2n+1 
   

 

Hence, a
2n+

  +b
2n+1 

 (a+b)
2n+1

  

 

But a
2n+

 +b
2n+ 

    (a+b)
2n+1

 is valid only if a=0 or b= 0.
 

  
 

 

Since a and b were positive integers, a
2n+1

+b
2n+1  

  (a+b)
2n1

 is impossible. 
 

 

We conclude a
2n+1

  +b
2n+1 

 c
2n+1

  
 

 

The even power case 

A similar argument applies.  If we assume a
2n

 +c
2n

  = b
2n

 for n1, then c
2n

 = b
2n  


 
a

2n 
.  Hence, by Proposition 2, 

we arrive at the least case
  
c

2n
 = (a+b)

2n 
 and the contradiction:

                                                                                                                                                                                                                                                                                                                                                                                                                                                       
 

                                                                                                                                                                                                                                     

a
2n

 +(a+b)
2n

  = b
2n

     

 

     In all, for n 1, we have a
2n1

 + b
2n1   

 c
2n1 

  and   a
2n

 + b
2n   

 c
2n 

.    

 

V. Conclusion 
Because of the unique properties and characteristics of the divisibility of powers, the resulting proof of Fermat’s 

Last Theorem seems fitting (like icing on a cake, so to speak).                            
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